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The nonlinear Rayleigh-Taylor instability of a liquid layer resting on a plane wall 
below a second liquid of higher density is considered. Under the assumption of 
creeping flow, the motion is studied as a function of surface tension and the ratio of 
the viscosities of the two fluids. The flow induced by the deformation of the layer is 
represented by an interfacial distribution of Green’s functions. A Fredholm integral 
equation of the second kind is derived for the density of the distribution, and is 
solved by successive iteration. The results show that for small and moderate surface 
tension, the instability of the layer leads to the formation of a periodic array of 
viscous plumes which penetrate into the overlying fluid. The morphology of these 
plumes strongly depends upon the viscosity ratio and surface tension. When the 
viscosity of the overlying fluid is comparable with or larger than that of the layer, 
the plumes are composed of a well-defined leading drop on top of a narrow stem. 
When the viscosity of the overlying fluid is smaller than that of the layer, the plumes 
take the form of a compact column of rising fluid. The size of the drop leading a 
plume is roughly proportional to the initial thickness of the layer. When surface 
tension is sufficiently small, ambient fluid is entrained into the leading drop and 
circulates in a spiral pattern. Convection currents generated by the rising plumes are 
visualized with streamline patterns, and the rate of thinning of the remnant layer, 
as well as the speed of the rising drop or plumes, are discussed. 

1. Introduction 
Liquid layers resting on solid surfaces are frequently encountered in nature and 

industry. In coating processes, for instance, gelatin emulsions and magnetic 
suspensions are coated on solid supports to produce photographic films and magnetic 
disks. Thin layers of suspending fluid develop at the late stages of coalescence of 
bubbles, drops, and solid particles. Similarly, thin layers of liquid develop around the 
grains and fibres during the flow of immiscible liquids through underground porous 
media and industrial filters. Thin aqueous layers of biological fluids consti tute 
integral parts of many organs ; a characteristic example is the thin film wetting the 
surface of the eye. Finally, layers of viscous fluids arise in several geophysical 
applications ; examples are layers of hot mantle material surrounding the Earth’s 
core, and sinking slabs of tectonic plates. 

There is considerable current interest in studying the dynamics of liquid layers 
from both an industrial and a fundamental perspective. From the industrial 
viewpoint, understanding and controlling the deformation of viscous layers provides 
useful guidelines for eliminating the onset of hydrodynamic instabilities. These 
instabilities may be responsible for coating non-uniformities that lead to streaked 
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and mottled surfaces and degrade the quality of the end product. Furthermore, 
describing the detailed, thin dynamics of liquid layers is requisite for understanding 
the physics of composite processes involving the coalescence of solid and flexible 
particles ; characteristic examples are flotation and filtration. On an academic level, 
the study of layer dynamics falls into a more general category of problems concerned 
with the evolution of passive and active interfaces. Issues of interest are the 
formation of ordered interfacial structures and the long-time, asymptotic behaviour 
of the deformed interfaces. From a geophysical perspective, analysing the fluid 
motion induced by the instability of liquid layers provides rational models for 
predicting continental drift and volcanic activity. 

In general, a liquid layer may deform owing to an external flow or to an external 
body force. In both cases, small inherent non-uniformities are spontaneously 
amplified. Of the instabilities due to a body force, the one most commonly 
encountered is the gravitational instability - the Rayleigh-Taylor instability 
(Rayleigh 1990) - and its study has become a classical topic in fluid mechanics. In its 
classical interpretation, the Rayleigh-Taylor instability is the instability of the 
interface between two superposed fluids of different densities where the heavier fluid 
lies on top. From a more general perspective, it may be defined as the instability of 
an accelerated fluid interface where the inertial force associated with the acceleration 
is directed from the heavy to the light fluid. 

Early work on the Rayleigh-Taylor instability consisted of linear stability 
analyses whose main objectives were to define the conditions for instability and to 
determine the most unstable mode as a function of the physical properties of the 
fluids (Chandrasekhar 1961, p. 428; Menikoff et al. 1977, 1978). To describe the 
morphology, evolution, and nonlinear interactions between emerging structures, 
weakly and highly nonlinear theories have also been developed. These may be 
classified into two basic categories depending on the Reynolds number that prevails 
during the flow. The majority of previous nonlinear studies are based on the 
assumption of potential flow, and apply for semi-infinite fluids (Sharp 1984; Baker 
et al. 1987; Gardner et al. 1988; Jacobs & Catton 1988a, b ;  Kerr 1988; Tryggvason 
1988; Zufiria 1988). The approximation of potential, inviscid flow is acceptable as 
long as the timescale of the instability is much shorter than the timescale of vorticity 
diffusion; in this manner, viscous effects are confined to thin layers along the fluid 
interface. 

The second category of nonlinear theories includes studies of the instability under 
conditions of creeping motion. These pertain to configurations composed of single or 
multiple liquid layers resting on a plane wall. Babchin et al. (1983) presented a 
formulation in the context of lubrication theory (valid for long waves) and argued 
that the presence of an ambient shear flow suppresses the nonlinear growth and leads 
to saturation. Yiantsios & Higgins (1989) extended this theory to account for the 
presence of an overlying fluid, and performed numerical calculations (based on the 
boundary-integral method) to describe the well-advanced stages of evolution. Their 
work will be discussed further in our paper. A number of authors addressed stable 
layer configurations with emphasis on the rate of dampening of external 
perturbations (Orchard 1963 ; Keunings & Bousfield 1987). With the exception of the 
analysis of Yiantsios & Higgins (1989), all previous nonlinear analyses were 
performed under the premises of lubrication theory. This theory is valid only when 
surface tension is sufficiently large, so that the growth of perturbations of small and 
moderate wavelengths is suppressed. A second assumption of all previous viscous 
nonlinear analyses is that the viscosity of the overlying fluid is of the same order or 
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lower order than that of the liquid layer. When this assumption cannot be made, the 
motion of the overlying fluid must be taken into consideration, leading to a rather 
complex mathematical problem. Further work relaxing the above two assumptions 
is needed in order to determine the behaviour under general conditions. 

Considering the Rayleigh-Taylor instability from a physical viewpoint, it is 
instructive to compare the purely inviscid with the purely viscous evolution. In  the 
inviscid case, the evolution depends on the wavelength of the perturbation and on 
the ratio of the densities of the two fluids (Tryggvason 1988). It is well established 
that for small density ratios the interface rolls up into spiral vortices, a consequence 
of the onset of secondary instabilities of the Kelvin-Helmholtz type. For large 
density ratios, the heavy fluid penetrates the light fluid through the development of 
spikes, leaving behind compact rising drops of light fluid. In the purely viscous case, 
the density ratio serves only to define the rate of the motion and is of no dynamical 
significance. Here, the viscosity ratio between the two fluids, A, is of primary 
dynamical concern. There is evidence in the literature that h plays a critical role by 
prohibiting certain types of interfacial motions or introducing new types of motion. 
This is suggested particularly by the linear analysis of Hooper & Boyd (1983), by the 
experiments of Olson & Singer (1985), and by the numerical calculations of Pozrikidis 
(1990a). Further work is required to delineate the exact effect of h and to bridge the 
parametric gap between the purely inviscid and the purely viscous motion. 

In this paper, we study the nonlinear, viscous instability of a liquid layer resting 
on a plane solid wall below a second liquid of higher density and arbitrary viscosity. 
We confine our attention to conditions of creeping flow and to cases of two- 
dimensional motion. Our analysis is valid for interfacial perturbations of any 
wavelength (no assumption regarding the magnitude of surface tension is made) and 
for fluids of arbitrary viscosity. Our objective is to present a coherent parametric 
investigation delineating the effects of viscosity ratio, surface tension, and layer 
thickness. We are particularly interested in describing the highly nonlinear, well- 
advanced stages of the instability, extending previous linearized and asymptotic 
theories. We pay attention to the fluid motion induced by the layer evolution and to 
the nonlinear growth of the developed structures. Our analysis entails parametric 
investigations in which we impose an initial periodic two-dimensional perturbation 
and compute the subsequent layer evolution. 

Our study is based on the numerical solution of the equations of creeping motion 
within both the liquid layer and the overlying fluid. To describe the evolution of the 
interface in a computationally efficient manner, we develop a boundary-integral 
representation expressing the flow in terms of a distribution of Green’s functions over 
the fluid interface, These Green’s functions are periodic in a direction parallel to the 
wall and yield zero velocity along the wall. Eventually, we reduce the problem to 
solving a Fredholm integral equation of the second kind for the density of the Green’s 
functions. After proving the uniqueness of solution and the convergence of the 
Neumann series of the derived equation, we develop a numerical method of solution 
which is based on successive iteration. 

In tj2 we formulate the problem, review the results of linear stability analysis, 
develop the boundary-integral representation, and formulate the problem as an 
integral equation. In $ 3  we present and discuss results of our computations. We 
conclude in $4 with closing remarks. 
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2. Problem formulation 
We consider the evolution of a liquid layer of thickness b resting on a plane solid 

surface below a second liquid of higher density (figure 1). We label the layer with the 
subscript 1 and the overlying semi-infinite fluid with the subscript 2. The interface 
is characterized by constant surface tension y .  We confine our attention to cases 
where the Reynolds number of the flow remains negligible throughout the evolution. 
The flow within the layer and the overlying fluid is governed by Stokes’ equation 
with the gravity term included: 

-VP+paV2u+p,g = 0 (2.1) 

where 01 = 1,2. We require the velocity to vanish along the solid wall, and the 
velocity and tangential component of the surface stress to be continuous across the 
fluid interface. We allow a discontinuity in the normal component of the surface 
stress at the interface, but require that it is compensated by surface tension. The 
problem is to describe the evolution of the layer from a given initial configuration. 

2.1. Linear stability theory 

A number of authors have carried out the classical linear stability analysis of the 
configuration shown in figure 1, assuming infinitesimal interfacial perturbations (see 
for instance Jain & Ruckenstein 1976). Because the basic state is independent of 
direction in a plane parallel to the wall, it suffices to consider two-dimensional 
perturbations periodic in the x-direction. Linear stability theory provides the growth 
rate u of a sinusoidal perturbation with wavelength 1 as a function of the viscosity 
ratio A = pJpl, the surface-tension group S = yk2/Apg, and the wavenumber or re- 
duced layer thickness p = kb; k is the wavenumber, k = 2x11, and Ap = p2-pI > 0. 
Positive CT implies instability, whereas negative u implies stability. The result is 

where the function G is defined as 

t sinh 2p - p+ A[sinh2 p- p”] 
‘(” = (1 - h2) /? + [cosh /3+ h sinh /312 

and may be shown to be positive definite. In the special case of fluids with the same 
viscosity, h = 1,  equation (2.2) simplifies to 

(2.4) r3 = I( 1 - S) (1 - ep28( 1 + 2p+ 2p2)}. 

There are two ways to interpret the above results. First, we may keep the 
wavenumber k constant and vary the film thickness b .  We then find that the layer 
is stable when S < 1 and unstable when S > 1, independent of A. Physically, this 
implies that the instability of the layer is determined solely by a balance between 
gravitational and capillary forces. A more natural interpretation arises by 
maintaining b constant and varying the wavenumber k. To elaborate on this, we 
recast (2.2) in the equivalent form 

where f is the inverse Bond number r = y/Apgb2. The layer is unstable when 
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FIGURE 1 .  A liquid layer resting on a plane wall below a second semi-infinite fluid ; 
1 is the wavelength of a periodic perturbation. 
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FIGURE 2. Growth rate predicted by linear theory d as a function of wavenumber p for inverse 

Bond number r= 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.0: (a) h = 0.1, ( b )  h = 1.0, (c) h = 10.0. 
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p < f i, that is for small wavenumbers or large wavelengths, and is stable otherwise. 
In the absence of surface tension, r = 0, all wavelengths are unstable. This behaviour 
is independent of A, a consequence of the absence of flow in the unperturbed state. 
In  figure 2(a-c) we present three plots of the growth rate & as a function of the 
reduced wavenumber /I for three values of h ( A  = 0.1, 1.0, and 10.0) and for several 
values of r. We note that not only the wavenumber for incipient stability, but also 
the general behaviour of the growth curves, is insensitive to A. Increasing the inverse 
Bond number, that is increasing y or decreasing Ap,  shifts the wavenumber 
corresponding to the maximum growth rate to lower values, favouring the growth of 
longer waves. Increasing the viscosity of the upper fluid, t ha t  is increasing A ,  
substantially reduces the growth rate of the perturbation. 

2.2. Formulation as an integral equation 

In this section we develop a boundary-integral representation capable of describing 
large, two-dimensional layer deformations. Before proceeding with this represen- 
tation, it is necessary to introduce the periodic Green’s function for Stokes flow in a 
two-dimensional domain bounded by a solid plane wall. Physically, this Green’s 
function represents the flow produced by an infinite x-periodic array of point forces 
of separation 1 placed above the wall. The corresponding velocity, pressure, and 
stress are given in terms of the three tensors G, p ,  and T as 

ui(x)  = Gij(x, xo) aji ( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

where the strength of each point force is 4na, and one of the point forces is placed a t  
the point x,. The tensor G satisfies the following conditions: i t  is periodic in the x- 
direction, that is G J x ,  y, x,) = Gi,(x+b, y, x,) ; it vanishes when x lies on the wall at  
y = w, that is G,,(x, y = w,x,) = 0 ;  and, as x-tx,, it reduces to the free-space two- 
dimensional Stokeslet S, i. i. 

Xi, = -c9i,ln121+x 
12.12 ’ 

where 2 = x-xo. It may be shown that G satisfies the symmetry property 

G,(x, x,) = G,,(.,> x )  

(Pozrikidis 1990b). The tensor T is defined as 

(2.7) 

All three of the tensors G, p ,  and T may be computed in closed form (Pozrikidis 
1987) ; their explicit expressions are given in the Appendix. 

Proceeding with the flow representation, we express the velocity field within both 
fluids in terms of an interfacial distribution of Green’s functions 

where q is the density of the distribution, and the integration is over one period of 
the interface, as illustrated in figure 3. Because of the properties of the Green’s 
function, the velocity field (2.9) satisfies Stokes equation as well as the continuity 
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equation. In addition, it is periodic in the x-direction, it is continuous across the fluid 
interface, and it vanishes along the plane wall at y = w. To derive an equation for 4, 
we consider the behaviour of the surface stress across the fluid interface. The stress 
field corresponding to (2.9) is given by 

gik,a(xo) = pa J ~ j k ( x o ,  x) qj(x) (2.10) 
Interface 

and the surface stress on either side of the interface is given by 

[fdxdla cik,a(xo) ndxo) = ~andxo) 1 w x o ,  x) d W >  (2.1 1) 
Interface 

where we recall that a = 1,2 for the lower and the upper fluid respectively. The unit 
normal vector n is directed into the layer. As the interface is crossed, the integral on 
the right-hand side of (2.11) suffers a discontinuity (Ladyzhenskaya 1969). 
Introducing the Cauchy principal value integral I (indicated by a PV superscript on 
the integral sign), equal to the mean value of the integral on either side of the 
interface, allows us to rewrite the surface stress on either side of the interface as 

[fi(XO)l* = -2v,!Z,(xo) +PlW0)3 (2.124 

where 

(2.12 b )  

(2.12 c) 

Subtracting (2.12b) from ( 2 . 1 2 ~ )  we obtain 

where /3 = (1  - A ) / ( l  + A ) ,  and Af = (a,-a,) * n is the discontinuity in the surface 
stress across the interface. In the particular case of gravity-driven flow, a represents 
the modified stress tensor defined with respect to the modified pressure, P-pg  - x. 
Relating the discontinuity in the surface stress across the interface to the surface 

A ?  = [(Pz-P,)gY+yV.nln, (2.14) tension, we write 

where the gravity vector points in the negative y-direction. Equation (2.13) is a 
Fredholm integral equation of the second kind for 4. Solving this equation allows the 
direct computation of the velocity or stress field by means of the fundamental 
representations (2.9) and (2.10). Note that when the viscosities of the two fluids are 
equal ( A  = 1 or /3 = 0), the solution to (2.13) is simply q = -Af/47c,u1. This renders q 
proportional to the discontinuity in the interfacial surface stress. 

Before proceeding with the solution of equation (2.13), i t  is imperative to examine 
the uniqueness of its solution. For this purpose, we investigate the existence of 
eigenvalues p of the corresponding homogeneous equation 

qi(X0) = %nk(xo) J. T&o, x) d W .  (2.15) 

Furthermore, since we are interested in developing an iterative procedure of solution, 
we seek to assess the convergence of the corresponding Neumann series. This requires 
that we consider complex as well as real eigenvalues and eigensolutions, /3 and 4. 

PV 

Interface 
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FIQURE 3. Schematic illustration of the periodically perturbed liquid layer. 

Assuming that q is an eigensolution to  (2.15), we define the complex function 

where q may be complex. This represents a continuous periodic velocity field that 
satisfies the equations of creeping motion and vanishes along the wall. The 
corresponding surface stress on either side of the interface is given by 

rpv 

(2.17) 

with a plus sign on the side of the layer, for a = 1, and a minus sign on the side of 
the upper liquid, for a = 2. Combining (2.17) with (2.15) we obtain 

f'=-(kl--& 1 

Next, we use the identities 

(2.18) 

( 2 . 1 9 ~ )  

(2.19b) 

where the indicated areas and contours are depicted in figure 3. The normal vector 
in ( 2 . 1 9 ~ ~ )  is directed inside the control area A, ,  whereas the normal vector in (2.19b) 
is directed outside the control area A ,  ; D and t~ are the rate of deformation tensor 
and the stress tensor for the flow w. Owing to the implicit periodicity, the 
contribution to the above line integrals from the straight vertical segments of C, and 
C,  cancel each other. Also, the contribution to the line integral in (2.19a) from the 
wall vanishes, because w vanishes along the wall. Furthermore, as the top boundary 
is moved to infinity, its contribution becomes negligibly small. Thus, by passing to 
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this limit, we find that the contour integrals in (2.19a, b )  may be reduced simply to 
the fluid interface. Inserting (2.18) into (2.19a, b )  we obtain 

(2.20 a)  

(2.20b) 

Adding these equations and noting that the integrals on the left-hand side are real 
and non-negative indicates that the integrals on the right-hand side are real and non- 
negative as well. In  turn, this indicates that B is real. Furthermore, multiplying the 
above equations we immediately obtain that ,P >, 1. In conclusion, (2.15) does not 
have real or complex eigenvalues with magnitude less than one, ensuring that (2.13) 
has a unique solution and that the corresponding Neumann series converges for all 
finite values of the viscosity ratio A. 

2.3. Numerical solution of the integral equation 
Computing the evolution of the layer involves three main tasks : describing the fluid 
interface, solving the Fredholm integral equation, and advancing the interface in 
time. In our numerical procedure, we approximate the interface by a, set of circular 
arcs defined by a set of marker points. To solve the integral equation (2.13), we use 
an iterative procedure similar to that developed by Pozrikidis (1990a). Our strategy 
is to assume an initial distribution for q,  to compute the right-hand side of (2.13), and 
then to replace the originally assumed with the newly computed distribution. This 
procedure is guaranteed to converge, for as shown in the preceding section, the 
homogeneous equation (2.15) does not have any real or complex eigenvalues with 
magnitude less than one. The advantages of our iterative procedure over 
conventional matrix inversion procedures are discussed by Pozrikidis (1990 a) .  When 
we have a converged value for q, we compute the velocity at the marker points using 
(2 .9) ,  and advance their position in time. 

The details of our description of the fluid interface are as follows. As mentioned 
above, we trace a period of the interface with a set of marker points and approximate 
the interface by a set of circular arcs. Each arc passes through a marker point and 
through two other auxiliary points defined on either side of each marker point. The 
position of each auxiliary point is computed from the position of the four nearest 
marker points using Lagrange interpolation with respect to the perimeter of the 
polygon defined by these four marker points. The radius of curvature of the interface 
at each marker point, which is needed to compute the surface stress discontinuity 
from equation (2.14), is taken to be the radius of the corresponding arc. 

The detailed tactics of our iterative solution of the integral equation are as follows. 
At each time we assign to each marker point a value of q and approximate the q- 
distribution with a parabolic function with respect to arclength over each arc. To 
evaluate the double-layer integral in (2.13), we compute the value of the kernel nk(xo)  
q j k ( x o , x )  at eight Gauss-Legendre points over each arc, multiply them by the 
corresponding Gauss-Legendre weights, and store the results in a matrix. We 
compute the singular contribution to the principal value integral by subtracting off 
and integrating analytically the singularity over each arc. We then compute q a t  the 
Gauss-Legendre poitns of each arc, using the above parabolic approximation, and 
multiply them by the previously computed values of the kernel to obtain the double- 
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layer integral. Applying this procedure a t  all marker points and using (2.13) provides 
us new values for q a t  each marker point. The iterations are terminated when the 
magnitude of the relative difference of two successive values of both components of 
q at every marker point differ by less than 0.0001. This procedure has the significant 
advantage of allowing the evaluation of the double-layer integral for different values 
of q without requiring the costly computation of the kernel each time. 

We compute the velocity of the interfacial marker points from the converged value 
of q using (2.9). The necessary contour integration is performed in a piecewise fashion 
over each arc and proceeds by subtracting off and integrating analytically the 
logarithmic singularity over each arc. The remaining regular integration is performed 
using the eight-point Gauss-Legendre method. Having computed the velocities, we 
advance the position of the marker points using the modified Euler’s method. 

To minimize the number of iterations, we set the initial q-distribution a t  each time 
step equal to the converged value of q at the previous time step. In  practice, the 
number of iterations necessary turned out to be a strong function of the viscosity 
ratio. In the most extreme cases considered, h = 0.1 and 10, ten and fifty iterations 
are required to solve the integral equation. We verified the accuracy of our 
calculations by comparing our numerical results with those predicted by linearized 
theory, as discussed in the next section. Furthermore, as an independent test of 
accuracy, we computed the area of the evolving layer. The maximum change in this 
area due to numerical error was less than 0.8%. 

As the interface evolves, marker points move far apart or very close to each other 
and regions of high curvature develop. To accommodate these features, we employ 
an adaptive point redistribution technique as discussed by Pozrikidis (1990a). 
Briefly, we add a new point between two existing points if the distance between these 
points is greater than a specified value ; we remove a point if this distance is less than 
a specified value. We also add a point if the angle subtended by the arc through a 
marker point is larger than a pre-established maximum. 

With finite surface tension, we observed the onset of numerical instabilities of the 
sawtooth type. These are suppressed by sufficiently decreasing the size of the time 
step. Large surface tension requires an excessively small time step which sets 
pragmatic limits to our parametric investigation. A typical calculation started with 
32 points and ended with 100 points. All computations were performed on the CRAY 
X-MP/4 computer of the San Diego Supercomputer Center. A complete calculation 
required approximately 10 minutes of CPU time. 

3. Results and discussion 
We study the nonlinear evolution of a liquid layer subject to an initial sinusoidal 

perturbation of amplitude less than 1 YO of the layer thickness. As mentioned in the 
preceding section, the evolution is characterized by three dimensionless parameters : 
the viscosity ratio A,  the reduced layer thickness /3 = kb, and the inverse Bond 
number r. In  our calculations, we fix k at the value of one and choose b to obtain the 
desired value of /?. Also, we reduce distances using as characteristic lengthscale l / k  
and time using as characteristic timescale kpJgAp. 

In figure 4 we present the evolution of the most unstable layer for the case of equal 
fluid viscosities h = 1 and zero surface tension r = 0. The dashed horizontal line 
represents the unperturbed layer position, corresponding to a layer thickness 
/? = 1.6. Three stages of development are apparent. A t  small times and up to 
approximately the time corresponding to the first curve, the initial disturbance 
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FIQURE 4. Evolution of the most unstable layer, p = 1.6, for A = 1 and r = 0 :  (a) t = 26, 30; ( b )  
34, 38; (c) 42, 46; (a) 50, 54; (e) 58; ( f )  62; (9) instantaneous streamlines at t = 66. 
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FIQURE 5. Growth of the disturbance shown in figure 4, A = 1, r= 0,  /3 = 1.6. Solid line shows 
maximum height above undisturbed surface. Dashed line shows maximum depth below 
undisturbed surface. 

grows exponentially, and the layer retains its sinusoidal shape. In the second stage, 
a leading drop supported by a column of fluid develops, as shown in figure ~(u-c). 
Exterior fluid is entrained into the drop at the top of the rising column. The final 
stage is characterized by a slightly elongated circular drop which undergoes little 
change in overall shape as it rises away from the wall, figure 4 (d-g). The induced fluid 
motion causes the supporting column to thin and the entrained exterior fluid to move 
deeper into the leading drop. The instantaneous streamline pattern for an advanced 
stage of development is shown in figure 4 (9) .  This pattern is characterized by a family 
of closed streamlines, composing a viscous eddy. The centre of this eddy is 
approximately at the same elevation as the centre of the rising drop. 

To examine the rate of the layer deformation and to compare our nonlinear results 
to predictions of linear theory, in figure 5 we plot the reduced height of the layer at 
the end and in the middle of each period with respect to time (on a semi-logarithmic 
scale, and wish a dashed and a solid line, respectively). During the initial growth 
period, we obtain straight lines with slope equal to 0.155, indicating that the 
disturbance grows exponentially in time. This growth rate is in perfect agreement 
with linear theory. Linear theory breaks down a t  approximately t = 20; past this 
time nonlinear effects become important, and the growth is no longer exponential. 
Figure 5 allows us to estimate the speed of rise of the drop formed in the advanced 
stages of evolution. Approximating the data represented by the solid line with a 
straight line, we find that past t = 51, the speed of rise of the drop is approximately 
proportional to Thus, the rising drop undergoes continuous acceleration as it 
moves away from the wall. The fact that the speed of the drop does not reach an 
asymptotic value but continues increasing at  an algebraic rate is consistent with the 
ill-posed nature of the Stokes flow problem for two-dimensional, infinite flow. 

We now consider a simple model for the thinning of the remnant layer left along 
the wall between successive rising drops. Label the point midway between rising 
plumes and right on the wall 0, and the local thickness of the layer h, as indicated 
in figure 4(f).  We expand the vertical velocity in a Taylor series about the point 0, 
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FIGURE 6. Characteristic stages in the evolution of layers thicker and thinner than the most un- 
stable one for A = 1.0, r= 0 :  (a)  /? = 2.0, ( b )  p = 0.6. Compare to figure 4(d) .  

FIGURE 7. Evolution of the most unstable layer, /? = 0.859, for A = 1 and r = 0.4: 
(a) t = 105, 145; (b)  155; (c) 165.5. 

FIGURE 8. Characteristic stage in the evolution of the most unstable layer, = 1.43, for h = 1.0, 
r = 0.5. Compare to figures 4(d) and 7 (c )  to see the effect of surface tension on entrainment. 

note that the zero- and first-order terms vanish because of the no-dip boundary 
condition and the continuity equation, respectively, and assume that the coefficient 
of the second-order term is nearly independent of time. In this fashion, we find h x 
l / ( c t + d ) ,  where c and d are constants. For the case h = 1, r = 0, depicted in figure 
4(a-g), our calculated values of c and d are 2.45 and 1.54. The resulting model 
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FIGURE 9. Effect of surface tension on drop formation for A = 1.0, p = 1.6: 
(a) r=o, (b)  0.1, (c)  0.2, (d) 0.3.  

accurately represents the thinning of the remnant layer for approximately t > 55.0. 
Physically, this implies that the remnant layer thins under the influence of the 
stagnation point flow generated by the rising drops, and its local dynamics are of 
secondary importance. 

In figure 6 we illustrate the effect of initial layer thickness on the layer evolution 
by presenting characteristic long-time stages for layers thicker and thinner than the 
most unstable one. For both cases, h = 1 and r = 0. We observe that asymptotically 
at  large times, the behaviour of the layer is quite insensitive to the initial thickness 
of the layer. We note, however, that as the thickness of the layer increases, the size 
of the rising drop is also increased. 

Next, we consider the effect of surface tension, maintaining h = 1 .  Thus, in figure 
7, we depict the evolution of the most unstable layer, p = 0.859, for r = 0.4. The 
three stages of development - exponential growth, drop formation, and drop rise - 
observed in the absence of surface tension exist here as well. However, at this high 
value of surface tension, entrainment of the exterior fluid into the drop is suppressed. 
For small surface tension, the drop entrains fluid as shown in figure 8 for r = 0.05. 
To illustrate the influence of surface tension on the evolution of a layer of fixed 
thickness, in figure 9 we present a sequence of advanced shapes for p = 1.6 and 
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FIQURE 10. Evolution of the most unstable layer, /3 = 2.05, for A = 0.1 and r = 0:  
(a) t = 14, 19; ( b )  20; (c) 22; ( d )  instantaneous streamlines at t = 23.25. 

r = 0,0.1,0.2,0.3. Once again, we see that entrainment disappears as surface tension 
is increased. The size of the drop is virtually independent of surface tension. 

Having discussed the development of a liquid layer whose viscosity is the same as 
that of the overlying fluid, we now turn our attention to the effects of differing 
viscosities. We begin with a layer fluid which is ten times more viscous than the 
overlying fluid, A = 0.1. Figure 10 shows the evolution of the most unstable layer in 
the absence of surface tension. Once again, three stages of development are apparent. 
The first stage, exponential growth, is identical to that of the case of equal viscosities. 
In the second stage, a distinct plume develops. This behaviour i s  in marked contrast 
to that observed in the second stage of evalution for A = 1, characterized by the 
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FIGURE 1 1 .  Growth of the disturbance shown in figure 10, A = 0.1, r = 0, p = 2.05. Solid line shows 
maximum height above undisturbed surface. Dashed line shows maximum depth below 
undisturbed surface. 

formation of a drop. The final stage is characterized by the formation of a knob of 
fluid on top of a rising plume. In contrast to the case A = 1,  r = 0, there is no 
entrainment of exterior fluid into the rising plume. Figure lO(d) shows the 
instantaneous streamline pattern for an advanced stage of development. This is 
qualitatively similar to that shown in figure 4 (9)  for A = 1 ,  r = 0. The growth rate 
of the disturbance is plotted in figure 11.  The slope of the curves in the linear region 
is 0.3070, identical to that predicted by linear theory. At large times, the speed of rise 
of the knob is proportional to t2.5. The thickness of the remnant layer decreases in 
time like 1/(0.02783+0.931). 

To illustrate the effect of initial layer thickness for A - 0.1, r = 0, in figure 12 we 
present characteristic advanced stages for layers thinner and thicker than the most 
unstable one. By comparing figure 12 (a)  to 10 (d )  and figure 12 (b )  to 10 (c), we deduce 
that the asymptotic structure of the layer is quite insensitive to the initial layer 
thickness. 

The effect of surface tension for A = 0.1 may be deduced from figure 13 depicting 
the evolution of the most unstable layer for r = 0.4. The first and second stages of 
exponential growth and column formation are similar to those for r = 0 shown in 
figure 10. The final stages, however, are quite different : for r = 0.4, the final stage 
is characterized by the formation and rise of a distinct, nearly circular drop which is 
supported by a thinning column of fluid. Comparing figure 13(b, c) with figure 7 ( b ,  
c )  we notice that the advanced stage for A = 0.1, r = 0.4 is quite similar to that for 
h = 1, r= 0.4, even though the early stages of evolution are quite different. The 
advanced stage for h = 0.1, r = 0.05 shown in figure 14 is composed of a rising drop 
and a supporting column. This structure is clearly intermediate between those for 
r = 0 and 0.4. 

Moving on, we consider a layer fluid whose viscosity is one tenth that of the 
overlying fluid, h = 10. As before, we first consider the evolution of the most unstable 
layer in the absence of surface tension, figure 15, and identify three stages of 
development. The first stage is exponential growth. In the second stage, a circular 
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FIGURE 12. Characteristic stages in the evolution of layers thinner and thicker than the most 
unstable for A = 0.1, r= 0 :  (a) ,8 = 1.0, compare to figure 10(d); (b) ,8= 6.0, compare to figure 
lO(c). 

drop is formed on top of a narrow, short stem. In  the third stage, the stem is 
elongated and thinned, while the leading drop rises and maintains its circular shape 
except for a slight dimpling a t  the bottom. The instantaneous streamlines shown in 
figure 15 (d )  are helpful in visualizing the long-time evolution. The corresponding 
growth rate curves shown in figure 16 have an initial slope of 0.0294, which is 
identical to that predicted by linear theory. For t > 210.0, the speed of rise of the 
drop is proportional to t1.03. For t > 246.0 the thickness of the remnant layer becomes 
proportional to 1/(0.0219t+0.231). Crudely speaking, for h = 10, the long-time 
structure of the layer is independent of the initial layer thickness, as illustrated in 
figure 17, whereas the size of the drop increases as the layer thickness is increased. 

To assess the effect of surface tension for h = 10, in figure 18 we show the evolution 
of the most unstable layer for r = 0.4. The same three stages which exist in the 
absence of surface tension - exponential growth, drop formation, and drop rise - are 
present here as well. However, a t  this value of surface tension, there is no dimpling 
of the rising drop. In the presence of only a small amount of surface tension, 
r = 0.05, slight dimpling does occur, as shown in figure 19. 

We have seen that increasing surface tension a t  constant viscosity ratio reduces 
entrainment and smooths out the interface. We may also look a t  the same evolutions 
from the point of view of constant surface tension with increasing viscosity ratio. We 
have already noted the marked effect, shown in figures 4, 10, and 15, of differing 
viscosities in the absence of surface tension. The influence of viscosity ratio at 
r= 0.4 is much less dramatic; compare figures 7, 13, and 18. In all cases we see a 
distinct, rising, circular drop pulling a thin column of fluid. The predominant 
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FIGURE 13. Evolution of the most unstable layer, /3 = 0.868, h = 0.1 and r = 0.4: 
(a) t = 60, 84; ( b )  88.5, (c) 95. 

~~~ 

FIGURE 14. Characteristic stage in the evolution of the most unstable layer, /3 = 1.59, for 
A = 0.1, r= 0.05. Compare to figure 1O(c) and 13(c) to Bee the effect of surface tension. 
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FIGURE 15; Evolution of the most unstable layer, B = 0.99, for A = 10 and r= 0: 
(a) t = 140, 210; (a) 231; (c) 255; ( d )  instantaneous streamlines at t = 268. 
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FIGURE 16. Growth of disturbance shown in figure 15, A = 10, r = 0, p = 0.99. Solid line shows 
maximum height above undisturbed surface. Dashed line shows maximum depth below 
undisturbed surface. 

difference is a decrease in the height above the wall at which the circular drop with 
a thin column first becomes evident; compare figures 13(b), 7 ( b ) ,  and 18(b). 

We have carried out additional calculations to investigate the effect of the initial 
amplitude of the perturbation. Our results showed that the amplitude has a 
negligible influence on the overall characteristics of the evolution, although, as 
expected, it plays an important role in determining the timescale of the motion. 
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FIGURE 17. Characteristic stages in the evc.Jtion of layers thinner and thic-31' than the most 
unstable for A = 10, r = 0: (a) /? = 0.6, compare to figure 15 (b) ; (b)  /? = 3.0, compare to figure 15 (e) .  

FIQURE 18. Evolution of the most unstable layer, /3 = 0.734, for h = 10 and r = 0.4: 
(a) t = 250, 370; ( b )  421.5; (c) 539.5. - 

------------ 1 ------------. 

FIQURE 19. Characteristic stage in the evolution of the most unstable layer, /3 = 0.940, for 
A = 10, r = 0.05. Compare to figures 1 5 ( d )  and 18(b) to see the effect of surface tension. 

Finally, we consider the development of an initial disturbance composed of two 
different wavelengths. In figure 20 we present the evolution of a layer of thickness 
B = 0.80 for h = 1.0 and r = 0. The initial perturbation of the interface is two 
superimposed, linearly unstable sinusoidal waves with wavenumbers k of 1.0 and 2.0 
and zero phase shift. The shorter wave corresponds to the most unstable mode and 
is identical to that depicted in figure 4. For clarity of illustration, in each frame of 
figure 20, we draw one and a half periods of the perturbation. The same three stages 
of development - exponential growth, drop formation, and drop rise - present in 
figure 4 for a single-wavelength disturbance are seen here as well. The only difference 
is that the two-wave perturbation yields two different rising drops within each 
wavelength. These drops evolve simultaneously but at  different rates. Their 
nonlinear interaction has only a minor influence on the qualitative features of the 
layer evolution. 



Rayleigh-Taylor instability of a liquid layer on a plane wall 635 

n 

Q 

FIGURE 20. Evolution of the most unstable disturbance, B = 1.6, for h = 1 ,  r = 0 in the presence 
of a superharmonic disturbance B = 0.8: (a) t = 23.6, ( b )  35.0, (c) 44.0, (d )  51.0. Compare to the 
single-wave evolution shown in figure 4. 

4. Concluding remarks 
Under the assumption of creeping flow, we performed a parametric investigation 

of the Rayleigh-Taylor instability of a liquid layer resting on a plane wall below a 
second liquid of higher density and different viscosity. We focused our attention on 
cases of zero or small surface tension with our main interest the description of large 
layer deformations. We found that the evolution of the layer is a strong function of 
the viscosity ratio of the two fluids and surface tension. Specifically, we found that 
when the viscosity of the layer is equal to or lower than that of the overlying fluid 
the layer develops into an array of rising drops which are supported by thin stems 
of fluid. When surface tension is sufficiently small, fluid of higher density is entrained 
into these drops. The size of a drop is proportional to the initial layer thickness. 
When the layer is more viscous than the overlying fluid, the layer evolves into an 
array of compact rising plumes. There is no entrainment into these plumes, even at  
zero surface tension. This dependence on the viscosity ratio is in agreement with 
experimental observations pertaining to geophysical applications (Olson & Singer 
1985; Whitehead 1988). At the largest value of surface tension considered, the 
dramatic differences due to viscosity ratio become less pronounced. While differences 
exist in the early stages of evolution, the final stage of evolution is rather 
independent of viscosity ratio ; the layer reduces into an array of rising drops pulling 
thin columns of fluid. 

Our computations show that for zero or moderate surface tension unstable layers 
grow without ever reaching a steady configuration. Yiantsios & Higgins (1989) 
performed lubrication- type calculations, as well as boundary-integral calculations 
(the latter for A = l ) ,  for the exact configuration studied in this paper. They found 
that for large surface tension an unstable layer may grow into a steady configuration 
composed of an infinite array of pendant drops. There is a critical inverse Bond 
number r below which the layer grows without bound and above which it grows to 
a steady configuration. These results nicely complement our conclusions. However, 
the lubrication- type calculations of Yiantsios & Higgins indicated that, in the case 
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of suppressed motion, the viscosity of the overlying fluid plays a minor role in the 
layer evolution. This is in contrast with our conclusions for large deformations. 

Our analysis assumes Stokes flow throughout the entire layer evolution. We find 
that for zero or moderate surface tension the speed at  which a drop or plume rises 
increases algebraically with time. This means that eventually the velocities in the 
flow will become large enough to invalidate the Stokes flow assumption. The point 
in the evolution at  which this happens depends on the specific fluids being considered. 
Our analysis also assumes that two-dimensional flow is maintained. In reality, small 
deviations from two-dimensionality will grow in time and the developing structures 
will become three-dimensional. Thus, the rising cylindrical plumes will transform 
into spherical drops. The behaviour of these drops as they rise away from the solid 
wall was recently investigated by Pozrikidis (1990b), and the reader is referred to his 
paper for further details. 
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Appendix. The periodic Green's function for two-dimensional flow 
bounded by a plane wall 

First, we consider the flow induced by an array of two-dimensional Stokeslets 
located at x, = (x,, yn), where n runs between -Nand N ,  and x, = x,+nZ, yn = yo. 
The corresponding Green's function may be conveniently derived by summing the 
flows produced by the individual Stokeslets. We thus write for the velocity tensor G 

where f = x-x,, rn = If,l. All lengths have been reduced using the wavenumber 
k = 2x11. To obtain the periodic Green's function, we let N go to infinity. Since the 
sum in (A 1) diverges, it is imperative to discard the infinite constant contribution. 
Using the regularized formula 

03 

A = I: In (r,) = In [cosh (8,) - cos (i?,,)]: + In 2 (A 2) 
n=-co 

(Lamb 1932, p. 71) and differentiating, we obtain 

Considering (A i ) ,  passing to the limit as N goes to infinity, and using (A 2) and (A 3) 
we obtain the four components of the Green's function periodic velocity tensor 
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The superscript P stands for periodic. The corresponding pressure vector p is given 

P P  = 2 L j ,  

whereas the stress tensor is given by 

1 [ T E , X  TLl  TL 1 [ v -  ( - 4 d 0 A x )  v .  ( - ioAx,  - A )  

v .  ( - A ,  -&A,) v .  (go& - A )  T L X  
TZzx = TZvx TExv = TZVg = 2 V-($,A,, - A )  V . ( - A , Q o A x )  . (A 6) 

All indicated differentiations are with respect to So. 
The Green’s function for a flow which is periodic in the x-direction and has zero 

velocity on a wall located at  y = w is derived in a similar manner, by summing the 
fundamental solution for zero velocity on a plane (see Blake 1971) 

Gwp = GP(f) - Gp(Z) + 2h2GPDP(f) -2hGSDP(f), (A 7) 
where h = yo-w, f = x-xi” =, xiM = (xo, 2w-yo). The superscripts possess the 
following meanings : WP means wall, periodic ; SDP means Stokes doublet, periodic ; 
and PDP means potential doublet, periodic. The tensor GPDP is given by 

with a plus sign for j = 1 for the x-axis, and minus sign for j = 2 for the y-axis. We 

i3GP 
The tensor GSDP is given by 

Gf?p(9) = &+. 
3x7 

We find 

The pressure vector corresponding to the periodic Green’s function is given by 

pwp = ~‘(2) -pP(2) - 2hpsDP(2),  (A 10) 

where 

Finally, the stress tensor is given by 

pYp = Tsp(9) - Tsp(f) + 2h2TPDP(f)  - 2hTSDP(.f) .  (A 12) 

The tensors PDP and Pp may be computed by straightforward differentiation using 

These forms are convenient for computer programming. 
21-2 
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